52 research outputs found

    Formal Verification of Differential Privacy for Interactive Systems

    Full text link
    Differential privacy is a promising approach to privacy preserving data analysis with a well-developed theory for functions. Despite recent work on implementing systems that aim to provide differential privacy, the problem of formally verifying that these systems have differential privacy has not been adequately addressed. This paper presents the first results towards automated verification of source code for differentially private interactive systems. We develop a formal probabilistic automaton model of differential privacy for systems by adapting prior work on differential privacy for functions. The main technical result of the paper is a sound proof technique based on a form of probabilistic bisimulation relation for proving that a system modeled as a probabilistic automaton satisfies differential privacy. The novelty lies in the way we track quantitative privacy leakage bounds using a relation family instead of a single relation. We illustrate the proof technique on a representative automaton motivated by PINQ, an implemented system that is intended to provide differential privacy. To make our proof technique easier to apply to realistic systems, we prove a form of refinement theorem and apply it to show that a refinement of the abstract PINQ automaton also satisfies our differential privacy definition. Finally, we begin the process of automating our proof technique by providing an algorithm for mechanically checking a restricted class of relations from the proof technique.Comment: 65 pages with 1 figur

    Using Participants' Utility Functions to Compare Versions of Differential Privacy

    Full text link
    We use decision theory to compare variants of differential privacy from the perspective of prospective study participants. We posit the existence of a preference ordering on the set of potential consequences that study participants can incur, which enables the analysis of individual utility functions. Drawing upon the theory of measurement, we argue that changes in expected utilities should be measured via the classic Euclidean metric. We then consider the question of which privacy guarantees would be more appealing for individuals under different decision settings. Through our analysis, we found that the nature of the potential participant's utility function, along with the specific values of ϵ\epsilon and δ\delta, can greatly alter which privacy guarantees are preferable

    On Modeling the Costs of Censorship

    Full text link
    We argue that the evaluation of censorship evasion tools should depend upon economic models of censorship. We illustrate our position with a simple model of the costs of censorship. We show how this model makes suggestions for how to evade censorship. In particular, from it, we develop evaluation criteria. We examine how our criteria compare to the traditional methods of evaluation employed in prior works

    A Methodology for Information Flow Experiments

    Full text link
    Information flow analysis has largely ignored the setting where the analyst has neither control over nor a complete model of the analyzed system. We formalize such limited information flow analyses and study an instance of it: detecting the usage of data by websites. We prove that these problems are ones of causal inference. Leveraging this connection, we push beyond traditional information flow analysis to provide a systematic methodology based on experimental science and statistical analysis. Our methodology allows us to systematize prior works in the area viewing them as instances of a general approach. Our systematic study leads to practical advice for improving work on detecting data usage, a previously unformalized area. We illustrate these concepts with a series of experiments collecting data on the use of information by websites, which we statistically analyze
    • …
    corecore